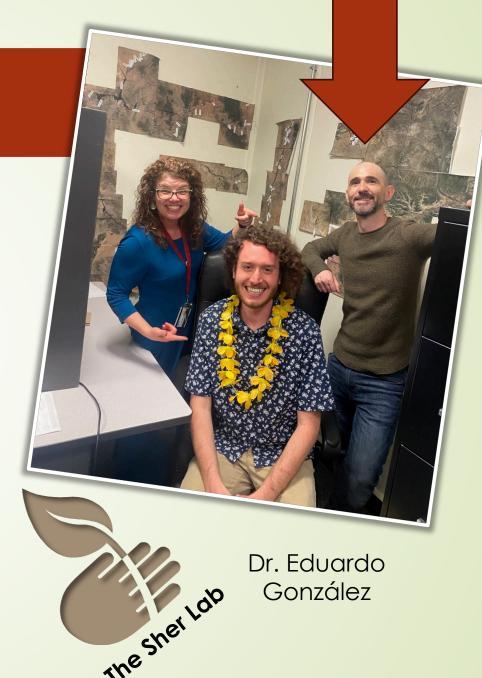
What's data got to do with it? Connecting the dots between research and practical applications

Anna A. Sher, Ph.D.


Department of Biological Sciences

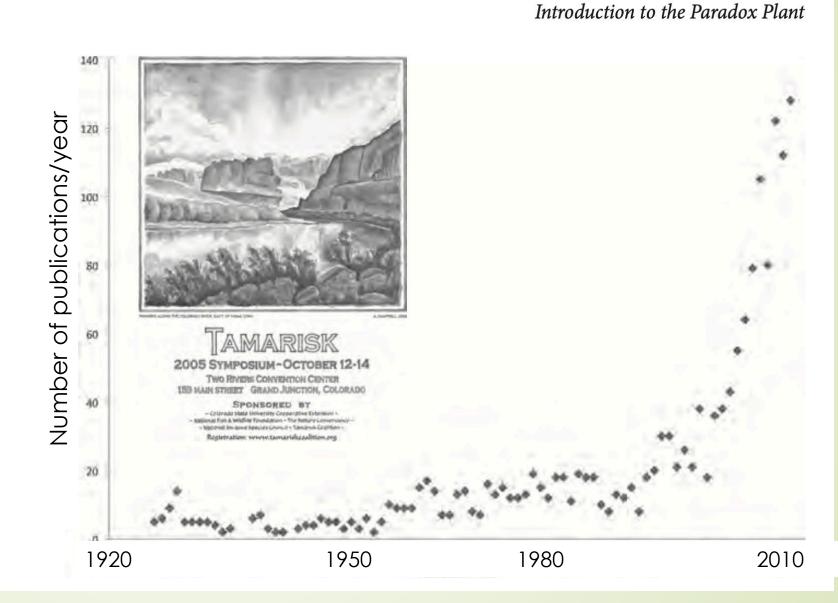
First, acknowledgements

Thank You!

How do you identify?

- Student?
- Researcher?
- Land or Resource Manager?
- Multiple roles?
- Something else?

Please introduce yourself to someone new, particularly someone with a different "conference identity"


The goals of this talk

- Get to know each other better
- Illustrate how we evaluate what we know
- Reflect on specific learnings regarding the human element
- Get you excited about this conference!

We all have been collecting data for a long time...

... mostly so that the data can be used to improve practices!

Paradox Plant. 2013. P 1-20 in Tamarix: A Case Study of Ecological Change in the American West. A. Sher and M. F. Quigley, eds. Oxford University Press.

Bias is real

Hence, the need for:

- Good science practice
- Listening to others with different experiences & backgrounds
- Objective ways to summarize findings

How do we summarize findings?

...especially when they are contradictory?

Method 1: Literature review


Tamarix Book

A CASE STUDY of ECOLOGICAL CHANGE in the AMERICAN WEST

TAMARIX

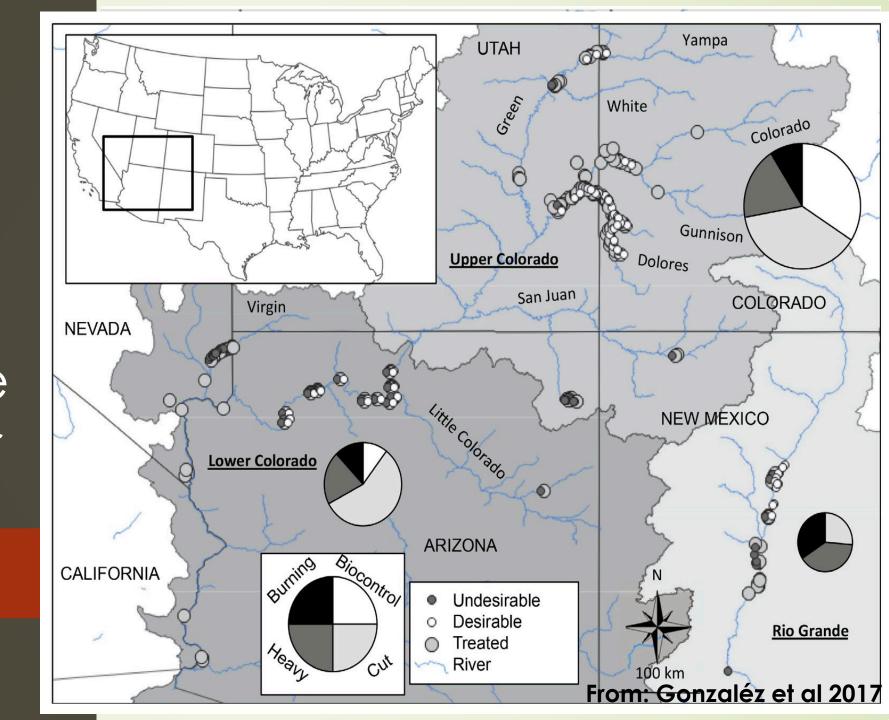
Edited By Anna Sher & Martin F. Quigley

40 experts on:

- Biology
- Ecology
- Management
- And more!

2013 Oxford University Press

limitations of traditional literature review


- Difficult to be objective
- How to weigh conflicting findings?

Method #2: analyze all the data together

"Chorus Data"

Vegetation response to invasive Tamarix control in southwestern U.S. rivers: a collaborative study including 416 sites

Eduardo González,^{1,2} Anna A. Sher,^{2,18} Robert M. Anderson,² Robin F. Bay,² Daniel W. Bean,³ Gabriel J. Bissonnete,⁴ Bérenger Bourgeois,^{5,6} David J. Cooper,⁷ KARA DOHRENWEND, ⁸ KIM D. EICHHORST, ⁹ HISHAM EL WAER, ² DEBORAH K. KENNARD, ¹⁰ REBECCA HARMS-WEISSINGER, ¹¹ ANNIE L. HENRY, ² LORI J. MAKARICK, ^{12,17} STEVEN M. OSTOJA, ¹³ LINDSAY V. REYNOLDS, 14 W. WRIGHT ROBINSON, 15 AND PATRICK B. SHAFROTH 16

¹EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement), CNRS, INPT, UPS, Université de Toulouse, 118 Route de Narbonne Bâtiment 4R1, 31062 Toulouse Cedex 9, France ²Department of Biological Sciences, University of Denver, F. W. Olin Hall, 2190 E Iliff Avenue, Denver, Colorado 80208 USA ³Colorado Department of Agriculture, Biological Pest Control, Palisade Insectary, 750 37.8 Road, Palisade, Colorado 81526 USA ⁴U.S. Bureau of Land Management, 82 East Dogwood, Moab, Utah 84532 USA ⁵Département de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, 2425 rue de l'agriculture, Quebec City, Quebec GIV 0A6 Canada ⁶Department of Biology, Québec Centre for Biodiversity Science, McGill University, Stewart Biology Building, 1205 Dr. Penfield Avenue, Montreal, Quebec H3A 1B1 Canada ⁷Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, Colorado 80523 USA ⁸Rim to Rim Restoration, P.O. Box 297, Moab, Utah 84532 USA ⁹Department of Biology, Bosque Ecosystem Monitoring Program (BEMP), University of New Mexico, MSC 03 2020, Albuquerque, New Mexico 87131 USA ¹⁰Department of Physical and Environmental Sciences, Colorado Mesa University, Grand Junction, Colorado 81501 USA ¹¹Northern Colorado Plateau Network, National Park Service, Moab, Utah 84532 USA ¹²Grand Canyon National Park, 1824 S, Thompson Street, Suite 200, Flagstaff, Arizona 86001 USA ¹³USDA California Climate Hub, Agricultural Research Service, University of California, Davis, California 95616 USA ¹⁴Department of Biology, Colorado State University, Fort Collins, Colorado 80523 USA

¹⁵ Grand County Weed Department, 125 East Center Street, Moab, Utah 84532 USA

¹⁶U.S. Geological Survey, Fort Collins Science Center, 2150 Centre Avenue, Building C, Fort Collins, Colorado 80526 USA

sturbance. Biological Conscivation 213.100-114. Conzaicz E., A.A. Shei, and 17 others. 2017. vegetation response to Control of Invasive fumarix in Southwestern US

Rivers: A Collaborative Study Including 416 Sites. Ecological Applications. DOI: 10.1002/eap.1566

arix in the American

om socio-ecological

nplications for

essing the prevalence and

numan element of

sts and managers

rns of invasive species

fter reduction of an

Limitations of analyzing the data together

- Treats all measurements the same
- Aren't using the individual study's "controls"
- Could over or under-estimate impact

Method #3: Meta-analysis

- A way to summarize data, by taking into account:
 - How big the effect was of the treatment
 - How rigorous the study was

The latest from the Sher Lab:

NeoBiota 91: 67–98 (2024) doi: 10.3897/neobiota.91.111628 https://neobiota.pensoft.net

REVIEW ARTICLE

Outcomes of control and monitoring of a widespread riparian invader (*Tamarix* spp.): a comparison of synthesis approaches

Alexander R. B. Goetz^{1,2}, Eduardo González-Sargas^{3,4}, Mayra C. Vidal⁵, Patrick B. Shafroth⁴, Annie L. Henry¹, Anna A. Sher¹

I Department of Biological Sciences, University of Denver, Denver, CO, USA 2 Current affiliation: Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA 3 Department of Biology, Colorado State University, Fort Collins, CO, USA 4 U.S. Geological Survey, Fort Collins Science Center, Fort Collins, CO, USA 5 Department of Biology, University of Massachusetts Boston, Boston, MA, USA

Corresponding author: Alexander R. B. Goetz (arbgoetz@ucla.edu)

Meta-analysis: How has the ecosystem responded to removal of *Tamarix* throughout the Southwest?

- Search of all papers published on this
 - ■266 papers-->52 papers
 - Must have sample size, a control, effect size, variance
 - ■N=777 effect sizes

Goetz, A. R.*, González-Sargas, E., Vidal, M. C., Shafroth, P. B., Henry, A. L.*, Sher, A. A. 2024. Control of invasive *Tamarix* in the American Southwest

Method #4: Automated Content Analysis

- Using Al to summarize themes in published literature
- Ability to review hundreds of papers
- Too soon to report results!

What have we learned?

Removal efforts do reduce Tamarix cover

Herbicide especially helpful

Overall understory vegetation shows a small improvement

And increases over time

Fauna are sometimes negatively affected by *Tamarix* removal

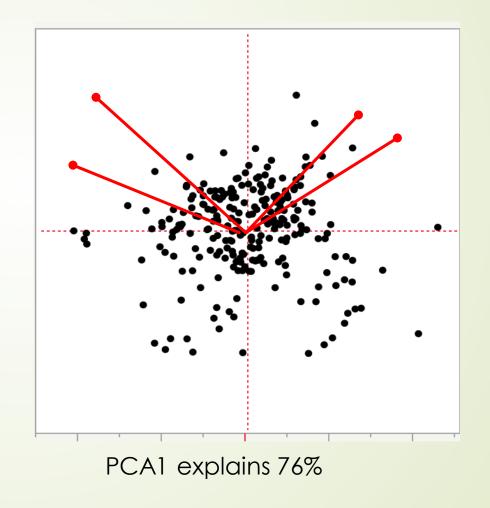
 Need more data on non-vegetation responses!

The goals of this talk (revisited)

- Get to know each other better
- Illustrate how we evaluate what we know
- Reflect on specific learnings regarding the human element
- Get you excited about this conference!

Why is this conference so important?

The human element


- Are scientists and managers communicating in this system?
- What human behaviors are associated with restoration success?

Take a moment to ask your new friend what it means to them

What is "restoration success"?

What is "restoration success"?

- PCA on difference in measures between:
- "Desirable"
 - Total native cover
 - Understory relative native cover
- "Undesirable"
 - Tamarix cover
 - Understory noxious cover

PCA1= "success metric"

Increase in *Tamarix* and Noxious Understory

Increase in desirable species

Lisa Clark, MS

Surveys and Interviews covering 80 projects (45 managers)

Variables Measured

Manager Decisions

- Monitoring (types & frequency)
- Information Sources
- Types of goals
 - **■** Plants
 - People
 - Water, Wildlife
- Organization
 - Number of collaborators
 - Employing agency

Manager Characteristics

- Number of management roles
- Manager's highest level of formal education
- Overall experience
- Local experience

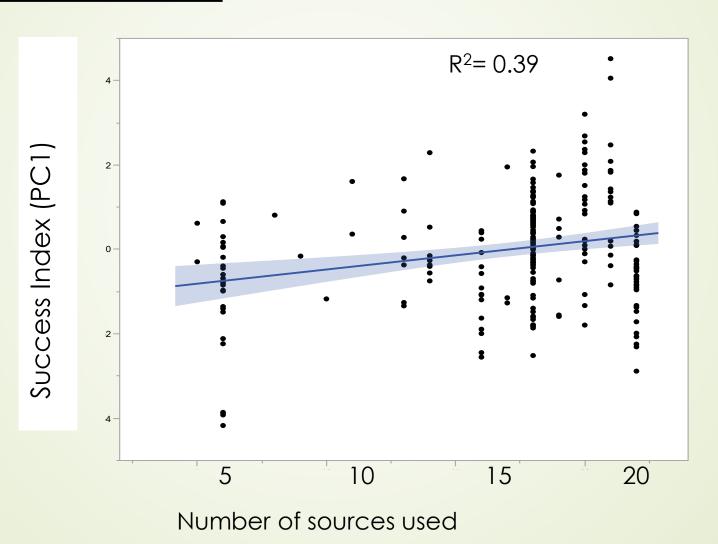
Using combinations of these, we could explain as much as 78% of the variability in restoration success!

PHYSICAL AND BIOTIC DRIVERS OF CHANGE IN RIPARIAN ECOSYSTEMS

The Human Element of Restoration Success: Manager Characteristics Affect Vegetation Recovery Following Invasive *Tamarix* Control

Anna A. Sher 1 \odot · Lisa Clark 1 · Annie L. Henry 1 · Alexander R. B. Goetz 1 · Eduardo González 2 · Anit Tyagi 1 ·

Isabelle Simpson 1 · Rérenger Bourgeois 3

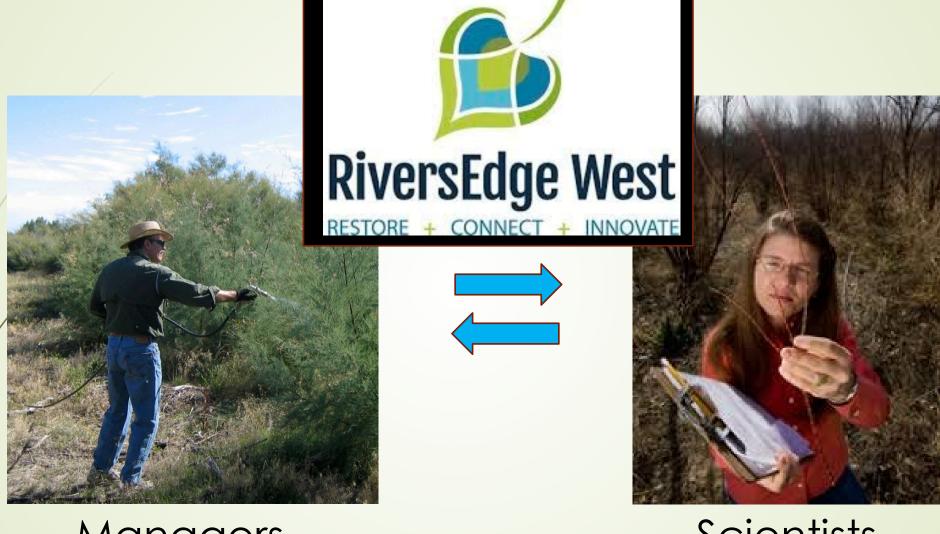


Worse outcomes when the manager had:

- more roles
- a fancier education

More success with more info sources used

We also found:



The Journal of the Society for Ecological Restoration

RESEARCH ARTICLE

Successful information exchange between restoration science and practice

Lisa B. Clark¹, Annie L. Henry¹, Rebecca Lave², Nathan F. Sayre³, Eduardo González^{1,4}, Anna A. Sher⁵

Managers

Scientists

What aspect of riparian restoration needs the help of science right now?

- Consult with your neighbor
- ► Email it to me: <u>anna.sher@du.edu</u>
- Or send anonymously to:
 - The Menti.com code 8692 5077

The data show...

- There is good communication between scientists and managers
- This communication matters for restoration outcomes

Why is this conference so important?

Because:

Success happens when we do good science and talk to each other!

What aspect of riparian restoration needs the help of science right now?

- Consult with your neighbor
- ► Email it to me: <u>anna.sher@du.edu</u>
- Or send anonymously to:
 - The Menti.com code 8692 5077

