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Introduction 
The Southwestern Willow Flycatcher (Empidonax traillii extimus; hereafter SWFL) is a 
federally endangered bird (USFWS 1995) that breeds in riparian areas in portions of New 
Mexico, Arizona, southwestern Colorado, extreme southern Utah and Nevada, and 
southern California (USFWS 2002).  Across this range, it uses a variety of plant species 
as nesting/breeding habitat, but in all cases prefers sites with dense vegetation, high 
canopy, and proximity to surface water or saturated soils (Sogge and Marshall 2000).  As 
of 2005, the known rangewide breeding population of SWFLs was roughly 1,214 
territories, with approximately 393 territories distributed among 36 sites in New Mexico 
(Durst et al. 2006), primarily along the Rio Grande. 

One of the key challenges facing the management and conservation of the Southwestern 
Willow Flycatcher is that riparian areas are dynamic, with individual habitat patches 
subject to cycles of creation, growth, and loss due to drought, flooding, fire, and other 
disturbances. Former breeding patches can lose suitability, and new habitat can develop 
within a matter of only a few years, especially in reservoir drawdown zones. Therefore, 
measuring and predicting flycatcher habitat - either to discover areas that might support 
SWFLs, or to identify areas that may develop into appropriate habitat - requires 
knowledge of recent/current habitat conditions and an understanding of the factors that 
determine flycatcher use of riparian breeding sites. 

In the past, much of the determination of whether a riparian site is likely to support 
breeding flycatchers has been based on qualitative criteria (e.g., “dense vegetation” or 
“large patches”).  These determinations often require on-the-ground field evaluations by 
local or regional SWFL experts.  While this has proven valuable in locating many of the 
currently known breeding sites, it is difficult or impossible to apply this approach 
effectively over large geographic areas (e.g., the middle Rio Grande).  The SWFL 
Recovery Plan (USFWS 2002) recognizes the importance of developing new approaches 
to habitat identification, and recommends the development of drainage-scale, quantitative 
habitat models.  In particular, the plan suggests using models based on remote sensing 
and Geographic Information System (GIS) technology that can capture the relatively 
dynamic habitat changes that occur in southwestern riparian systems. 

In 1999, Arizona Game and Fish Department (AGFD) developed a GIS-based model 
(Hatten and Paradzick 2003) to identify SWFL breeding habitat from Landsat Thematic 
Mapper (TM) imagery and 30-m resolution digital elevation models (DEMs). The model 
was developed with presence/absence survey data acquired along the San Pedro and Gila 
rivers, and from the Salt River and Tonto Creek inlets to Roosevelt Lake in southern 
Arizona (collectively called the project area). The GIS-based model used a logistic 
regression equation to divide riparian vegetation into 5 probability classes based upon 
characteristics of riparian vegetation and floodplain size. This model was tested by 
predicting SWFL breeding habitat at Alamo Lake, Arizona, located 200 km from the 
project area (Hatten and Paradzick 2003).  The GIS-based model performed as expected 
by identifying riparian areas with the highest SWFL nest densities, located in the higher 
probability classes.  

In 2002, AGFD applied the GIS-based model throughout Arizona, for riparian areas 
below 1,524 m (5,000 ft) elevation and within 1.6 km of perennial or intermittent waters 
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(Dockens et al. 2004). Overall model accuracy (using probability classes 1-5, with class 5 
having the greatest probability of nesting activity) for predicting the location of 2001 nest 
sites was 96.5%; accuracy decreased when fewer probability classes were defined as 
suitable.  Map accuracy, determined from errors of commission, increased in higher 
probability classes in a fashion similar to errors of omission.  Map accuracy, like model 
accuracy, was dependent on what probability cutpoint was selected.  A cutpoint, or 
probability threshold, is a modeler-selected value at which “suitable” (i.e., high 
probability) habitat is dichotomously distinguished from “unsuitable” (i.e., low 
probability) habitat.  For the Hatten and Paradzick (2003) model, the lower the cutpoint 
used, the greater the amount of predicted habitat and model sensitivity, but the lower its 
specificity.  Inversely, as the cutpoint increased, the model’s specificity increased, but the 
amount of predicted habitat and the sensitivity decreased.  To explain the effect of 
cutpoint choice, Hatten and Paradzick (2003) concluded that if all class-5 cells (the 80% 
cutpoint) had been surveyed in Arizona during 2001, approximately 20% would have 
been unsuitable for SWFLs and roughly 30% of SWFL nests would have been missed.  If 
surveyors had searched all class 3-5 cells (representing the 40% cutpoint), 32% would not 
have been breeding habitat, and <5% of nests would have been missed.  This is an issue 
inherent with all models of this kind, and there is no perfect cutpoint.  The Hatten and 
Paradzick (2003) model was clearly successful at predicting flycatcher breeding sites in 
Arizona based on remote sensing data and GIS-based themes.   

This is the first large-scale predictive model of its kind for SWFL habitat.  It focused on 
low to mid-elevation breeding sites because there were relatively few high elevation sites 
or territories in Arizona.  Based upon the model’s robust performances in Arizona, we 
believed that it could be applied  elsewhere within the species’ range.  Because New 
Mexico has a relatively large SWFL breeding population, with intensive survey and nest 
monitoring of major sites along the Rio Grande (Ahlers and Moore 2004), it provided a 
good opportunity to evaluate the model’s performance outside of Arizona.  We 
hypothesized that if the model was applied to the Rio Grande, the 5 probability classes 
output by the model would contain either a linear, exponential, or binary relationship 
with SWFL nest or territory density.  Because the model outputs georeferenced layers 
that can be queried and viewed with a GIS, the model can be used as a decision support 
system for prioritizing breeding site and nest surveys, or identifying potential restoration 
or enhancement locations.  In doing so, users would need to carefully consider the effect 
of cutpoint choice and the amount of predicted habitat. 

Methods 

Modeling Overview 

We applied the same modeling techniques used in Arizona (Hatten and Paradzick 2003; 
Dockens et al. 2004) to identify and map potential SWFL breeding habitat in 2004 along 
the Rio Grande, from Elephant Butte Dam in southern New Mexico to near the Alamosa 
National Wildlife Refuge in southern Colorado. Our initial focus was the determination 
of model accuracy, as estimated from errors of omission; e.g., nest sites or breeding 
locations that occurred but were in areas not predicted by the model.  

To accomplish our goal it was necessary to complete four steps: (1) create four GIS 
variables derived from Landsat Thematic Mapper (TM) imagery and 30-m resolution 
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DEMs, (2) populate a logistic regression model with the four GIS variables to create a 
probability grid, (3) divide riparian vegetation into 5 probability classes, and (4) assess 
model accuracy within the 5 probability classes with errors of omission, and model fit 
with nest or territory density.  

The logistic regression equation we used for this study (Table 1) calculates the 
probability of nest occurrence with the following equation:  

probability  =  exp(logit) /  1 + exp(logit); where the logit is: 1.483(NDVI) + 
0.098(NDVIBEST) + 0.034(FLOODPL) + 0.648(NDVISTD) – 
6.074.  

The four variables are defined as follows:  

(1) NDVI = dense vegetation (NDVI > 0.33) at the site (0.09 ha);  

(2) NDVIBEST = amount (%) of densest vegetation (NDVI > 0.41) within a 4.5-
ha neighborhood;  

(3) FLOODPL = amount (%) of floodplain or flat terrain (<2.5 degrees) within a 
41-ha neighborhood, and  

(4) NDVISTD = the standard deviation in NDVI (12 classes) within a 4.5-ha 
neighborhood. 

GIS Database 

We created vegetation density grids (0.09-ha cells) for the Rio Grande corridor from 
spectral data that were extracted from five TM images acquired (imaged) on June 13, 
2004, during a cloud-free period (Figure. 1).  To process the imagery and create the four 
GIS variables (layers) necessary to populate the model (see Table 1), we used ERDAS 
Imagine software (ERDAS Inc., Atlanta, Georgia) and ARC/INFO GIS (ESRI Inc., 
Redlands, CA).  After masking agricultural fields that were visible on the TM imagery, 
we created an overall vegetation density grid by calculating the Normalized Difference 
Vegetation Index (NDVI) within 3-5 km of the Rio Grande.  We selected a wide, 
variable-width buffer in order to capture riparian vegetation in the lower reaches of 
tributaries that often contain flycatcher habitat.  We created riparian-vegetation density 
grids from the overall vegetation grid by using NDVI thresholds and classification, and 
stored the results from each operation in a separate grid (Hatten and Paradzick 2003).   

We created a generalized riparian-vegetation density grid from the overall vegetation 
density grid by extracting all cells with an NDVI value >0.126 (Hatten and Paradzick 
2003).  We also created an intermediately dense (NDVI >0.33) and very dense riparian-
density vegetation grid (NDVI > 0.41).  Next, we created an interval-scaled riparian-
density vegetation grid by dividing the riparian grid (NDVI > 0.12) into 12 classes, 
ranging from 0.126 – 0.86).  Once the riparian-vegetation density grids were created, we 
calculated the proportion (%) of densest vegetation, and heterogeneity in vegetation 
density (SD), within a 120-m radius (4.5 ha) of each location with moving window 
functions (FOCALSUM and FOCALSTD, respectively).  We used the FOCALSUM 
function on the densest riparian vegetation grid (NDVI >0.41), and the FOCALSTD 
function on the interval-scaled riparian grid.  Lastly, we identified the proportion (%) of 
flat area (< 2.50) off of a 30-m resolution DEM with SLOPE and FOCALSUM functions.  
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Model Fit and Accuracy Assessment 

To assess the fit of the model, we overlaid SWFL territory locations upon the 5 
probability classes that were output by the model.  The territory locations were acquired 
during the 2004 field season (June – September) from sites that are intensively monitored 
between Elephant Butte Reservoir and Velarde by the U.S. Bureau of Reclamation 
(Ahlers and Moore 2004).  Nest/territory density is obtained by dividing territory 
numbers within each probability class by the area (ha) found with each probability class 
(Hatten and Paradzick 2003).  If the model works as expected, there will be an increase in 
territory density in higher probability classes in either a linear, exponential, or binary 
fashion. We examined model fit for breeding sites under 1,524 m elevation because that 
was the elevational cutoff used in developing the model within Arizona (Hatten and 
Paradzick 2003), and because SWFL nest location data for New Mexico were only 
available for sites below this threshold.  However, we did model the NDVI probability 
classes for riparian habitat above 1,524 m, as this might help identify possible breeding 
habitats in higher elevations and thus provide useful information for future surveys or 
modeling.  

To assess model accuracy, we overlaid the territory locations upon the 5 probability 
classes, generated a frequency histogram, and calculated omission errors.  An omission 
error occurs when a territory location falls outside of predicted habitat, thus omission 
errors change according to what probability cutpoint is selected (Hatten and Paradzick 
2003).  If the model is working correctly, omission errors should increase as the cutpoint 
is raised because less riparian vegetation is predicted as suitable for breeding.  We also 
expected an inverse relationship between amount of predicted breeding habitat and the 5 
probability classes, so higher probability classes should contain less riparian vegetation, 
and lower classes more.  

Results 

 Predicted Habitat 

The GIS-based model found 91,104 ha of riparian or upland vegetation that had an NDVI 
value > 0.126 (probability classes 1 – 5) along the Rio Grande (Table 2).  Because all 
probability classes were totaled, this number  reflects the total amount of riparian 
vegetation and some non-riparian vegetation in the upper reaches (i.e., >1,524 m) that is 
probably pinyon/juniper or pine (Appendix 1, Figs H – L).  When we restricted our 
analysis to under 1,524 m elevation (i.e., under 5,000 feet), there were 25,514 ha of 
riparian vegetation within the NDVI density band of our model (classes 1-5).  The 
greatest amount of high probability habitat  under 1,524 m was located near Elephant 
Butte Reservoir (Appendix 1, Fig. A); the largest amount above 1,524 m was in the San 
Luis Valley (Appendix 1, Fig. M).  The amount of predicted habitat was greatest for 
probability class 1; however, there was not a direct inverse relationship between 
probability class and predicted habitat.  Instead, the amount of class 5 habitat was greater 
than classes 2 – 4.  Still, the amount of predicted habitat changed dramatically when 
lower probability classes were excluded.  For example, probability class 1 contained 
46.4% of predicted habitat, classes 2-4 contained 10-12% apiece, and class 5 contained 
21.2% (Fig. 2).  

4 



Accuracy Assessment and Model Fit 

The results of our binary habitat classification assessment found that the lower the 
cutpoint, the greater the sensitivity of the model.  Conversely, the higher the cutpoint, the 
lower the model’s sensitivity (Fig. 3).  This reflects the relationship between cutpoint and 
the proportion of riparian vegetation that is considered suitable as SWFL breeding 
habitat.  Specifically, the lower the cutpoint, the greater the proportion of riparian 
vegetation that was classified as suitable for breeding, and thus fewer SWFL territories 
were omitted.  At a 20% cutpoint, the model was 86.1% accurate, while at an 80% 
threshold, the model was 63.5% accurate.  

The density of flycatcher territories increased exponentially within the 5 probability 
classes (Fig. 4), with class 1 containing the lowest density (0.002/ha), and class 5 the 
greatest (0.024/ha).  There was an order of magnitude difference between the density of 
SWFL territories found in class 5 compared to class 1.  The magnitude of change in 
density between classes varied; nest density increased 50% between classes 1 and 2, 
100% between classes 2 and 3, 33% between classes 3 and 4, and 200% between classes 
4 and 5.   

Discussion 

Model Performance 

Even though the GIS-based model was developed based on SWFL habitat and nest 
location data from Arizona (Hatten and Paradzick 2003), the model performed as 
expected along the Rio Grande, with an exponential relationship between the 5 
probability classes and territory density.  This relationship indicates that NDVI is a robust 
integrative variable for characterizing riparian habitat features that are important in 
habitat selection by SWFLs.  Thus, the GIS-based model can be a useful tool to managers 
in New Mexico for identifying possible SWFL breeding habitats, prioritizing survey 
efforts, identifying potential restoration areas and tracking restoration progress, and 
monitoring riparian habitat changes over time.  The densities of flycatcher territories 
along the Rio Grande were 250% smaller than those observed in 2000 along the Gila and 
San Pedro Rivers (Paxton et al. 2007), but the pattern of distribution (i.e., exponential) 
within the 5 probability classes was very similar.  This indicates that while SWFL 
densities can change by location, year, or spatial extent of the project area, the response 
of the flycatchers to the habitat appears similar, with SWFL preferring dense, vigorous 
riparian vegetation as reflected in high NDVI values.  

Based upon our observations in Arizona (Hatten and Paradzick 2003), we expected to see 
an inverse relationship between the five model probability classes and the amount of  
riparian vegetation (NDVI > 0.126), but the middle classes were smaller than the last 
class (Fig. 2).  We suspect that the extensive amount of agriculture along the Rio Grande 
Valley has altered this relationship, but more research is necessary to understand the 
influence of land use and riparian-vegetation growth patterns throughout the 
southwestern U.S, especially anthropogenic factors such as groundwater usage and urban 
development. 
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Future Modeling 

There are several potential ways to further test and refine this SWFL habitat model for 
broader application in New Mexico, and potentially elsewhere in the range of the 
flycatcher.  One option would be to apply this model to other river systems within New 
Mexico, particularly the Gila River.  The Gila supports several known large SFWL 
populations (Durst et al. 2005), and it would be instructive to see if the model correctly 
predicts the location of these breeding sites, or if it identifies new potential breeding 
habitats that may be worth surveying.  

Another possibility would be to build new “customized” GIS-based models based on Rio 
Grande-specific habitat characteristics and nest/territory data.  These models could be 
based on currently available nest location data, or include gathering additional nest data 
from more breeding sites.  One could assess whether Rio Grande-specific models 
improve model sensitivity and specificity by looking at territory densities within the 5 
probability classes.  If a custom model improves the sensitivity and specificity of the 
model, flycatcher territory densities should increase in the upper probability classes. 
Creating river-specific predictive models has recently been shown to improve model 
sensitivity and specificity along the Gila and San Pedro Rivers in Arizona (Paxton et al. 
2007), thus we could potentially expect such an outcome for the Rio Grande as 
well.   

By applying the GIS-based model in two or more years, which requires populating the 
model with annual-specific vegetation characteristics derived from the appropriate TM 
scene, one can quantify in a spatially explicit manner changes in SWFL breeding habitat 
(Paradzick and Hatten 2004).  Detecting changes in SWFL breeding habitat can be useful 
for determining whether climate, hydrology, or anthropogenic factors are reducing or 
increasing their breeding habitat between one or more time intervals.  By incorporating 
habitat changes into a SWFL breeding habitat model, which requires running the model 
at two different time intervals and creating a change detection grid, one can create a 
spatial-temporal model of SWFL breeding habitat (Paxton et al. 2007).  Spatial-temporal 
models have been shown to be the best overall predictors of SWFL breeding habitat 
because they capture some of the underlying stability and dynamics in riparian vegetation 
that are important components in SWFL breeding habitat.  

Lastly, applying the model to other large river systems in the Southwest would provide 
very useful insights on the applicability of the model over a broader geographic range.  If 
the model proves robust on a range-wide scale, it would allow for riparian habitat 
prediction, quantification, and change detection over unprecedented spatial and temporal 
scales.  This would help facilitate the landscape and drainage level conservation and 
management recommended in the SWFL recovery plan (USWFS 2002). 
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Figure 1. The extent of Landsat Thematic Mapper scenes (path 33, rows 33 - 38) used for 
SWFL habitat modeling and mapping, overlaid on NM county boundaries and the Rio 
Grande.  The Landsat scenes were captured on June 13, 2004. 
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Figure 2. The proportion of riparian vegetation found within each probability class, along 
the Rio Grande under 1,524 m elevation, as determined by the GIS-based model.  
Probability class 1, which contained cells with model probabilities ≤  20%, accounted for 
46.4% of the riparian vegetation, and probability class 5 (cell probabilities > 80%) 
accounted for 21.2%.  
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Figure 3. The sensitivity (1 – omission error) of the SWFL habitat model at 4 probability 
thresholds, as modeled along the Rio Grande in 2004.  For this analysis, we created 4 
binary habitat grids by classifying all cells with a probability greater than the NDVI 
threshold as suitable breeding habitat, and cells under the NDVI threshold unsuitable.  We 
overlaid SWFL territories on each binary habitat grid and determined the model’s 
sensitivity at each probability threshold.  In this example, at a 20% threshold, where cells 
with a model probability >20% were coded suitable, 86.1% of territories were correctly 
classified (i.e., fell inside the suitable zone), and 13.9% were omitted.  
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Figure 4. The density of SWFL territories within 5 probability classes that were output by 
the GIS-based habitat model, based on Rio Grande data for 2004.  For this analysis, only 
areas that were less than 1,524-m in elevation were included in the analysis. 
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Table 1. Multivariate logistic regression model obtained from Southwestern Willow 
Flycatcher (SWFL) data (Hatten and Paradzick 2003). The model was created from 
retrospective survey data (71 breeding sites and 136 nonuse sites) collected during 1999 in 
south-central Arizona. Breeding sites contained a SWFL nest and nonuse sites did not.  
 

Variable Coeff SE G Odds Ratioc P 

NDVIa 1.483 0.48  9.6 4.4 0.002 

NDVIBESTb 0.098 0.02 29.6 1.6c <0.001 

FLOODPLb 0.034 0.01  8.7 NA 0.003 

NDVISTDd 0.648 0.16 19.5 1.9 <0.001 

Constant -6.074 0.98 64.5 0.0 <0.001 

aModeled as a binary variable (NDVI classes 1-9 = 0; 10-12 = 1) 
bModeled as a continuous variable (scaled from 0 – 49) 
cOdds ratio calculated in 10% increments 
dModeled as a continuous variable (scaled from 0 – 6) 
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Table 2. The frequency of SWFL territories, amount of predicted habitat, and density of 
flycatchers within each model probability class for riparian habitat long the Rio Grande in 
2004.  The table also shows the amount of predicted habitat, and density of flycatchers, 
with and without a 1524-m elevation mask applied.  Fifteen SWFL territories fell outside of 
all probability classes and they were lumped into the lowest probability class.  The 
proportion (%) of the total amount of riparian vegetation by class, as determined by the 
model, is also presented. 
 

Class Frequencya  Area (ha)b Densityb Area(ha)c Densityc Percentd 

1 29 53248.68 0.001 11840.31 0.002 46.4 

2 7 7565.31 0.001 2672.82 0.003 10.5 

3 16 7200.99 0.002 2661.93 0.006 10.4 

4 24 8693.64 0.003 2921.67 0.008 11.5 

5 132 14395.59 0.009 5417.55 0.024 21.2 

Total 208 91104.21   25514.28  100 

a Number of flycatchers 

bPredicted breeding habitat (classes 1 – 5) or SWFL density along entire Rio Grande study area (see Fig. 1) 
c Predicted breeding habitat (classes 1 – 5) or SWFL density along  Rio Grande under 1524 m 

dProportion of riparian vegetation, as determined from the model, within each probability  class 
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Appendix 
Key to location of Appendix figures 
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Figure A. SWFL habitat model output (the 5 probability classes are shown in the 
legend) and 2004 SWFL territories (red circles), overlain on a 1:250,000 scale USGS 
topographic map. 
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Figure B. SWFL habitat model output (the 5 probability classes are shown in the legend) and 2004 
SWFL territories (red circles), overlain on a 1:250,000 scale USGS topographic map. 



Figure C. SWFL habitat model output (the 5 probability classes are shown in the legend) and 
2004 SWFL territories (red circles), overlain on a 1:250,000 scale USGS topographic map. 
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Figure D. SWFL habitat model output (the 5 probability classes are shown in the 
legend) and 2004 flycatcher territories, overlain on a 1:250,000 scale USGS 
topographic map. 
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Figure E. SWFL habitat model output (the 5 probability classes are shown in the legend), 
overlain on a 1:250,000 scale USGS topographic map. 
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Figure F. SWFL habitat model output (the 5 probability classes are shown in the legend), 
overlain on a 1:250,000 scale USGS topographic map.   
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Figure G. SWFL habitat model output (the 5 probability classes are shown in the legend), 
overlain on a 1:250,000 scale USGS topographic map. 
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Figure H. SWFL habitat model output (the 5 probability classes are shown in the legend), 
overlain on a 1:250,000 scale USGS topographic map.  Note that much of the Probability 
Class 1 vegetation shown away from the river corridor is non-riparian upland vegetation, 
possibly pinyon/juniper or pine. 
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Figure I. SWFL habitat model output (the 5 probability classes are shown in the legend), overlain 
on a 1:250,000 scale USGS topographic map. 
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Figure J. SWFL habitat model output (the 5 probability classes are shown in the legend) and 
2004 flycatcher territories, overlain on a 1:250,000 scale USGS topographic map.  Note that 
much of the Probability Class 1 vegetation shown away from the river corridor is non-
riparian upland vegetation, possibly pinyon/juniper or pine. 
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Figure K. SWFL habitat model output (the 5 probability classes are shown in the legend) and 
2004 flycatcher territories, overlain on a 1:250,000 scale USGS topographic map.  Note that 
much of the Probability Class 1 vegetation shown away from the river corridor is non-riparian 
upland vegetation, possibly pinyon/juniper or pine. 
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Figure L. SWFL habitat model output (the 5 probability classes are shown in the legend) and 
2004 flycatcher territories, overlain on a 1:250,000 scale USGS topographic map.  Note that 
much of the Probability Class 1 vegetation shown away from the river corridor is non-
riparian upland vegetation, possibly pinyon/juniper or pine. 
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Figure 2. SWFL habitat model output (the 5 probability classes are shown in the legend) and 2004 
flycatcher territories, overlain on a 1:250,000 scale USGS topographic map. 

Figure M. SWFL habitat model output (the 5 probability classes are shown in the legend) and 
2004 flycatcher territories, overlain on a 1:250,000 scale USGS topographic map.  Note that 
much of the Probability Class 1 vegetation shown away from the river corridor is non-riparian 
upland vegetation, possibly pinyon/juniper or pine. 
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