Stabler and Still estimate density and standing biomass of tamarisk along waterways in a northwest to southeast transect in Oklahoma to test the hypothesis that environmental conditions in northwest Oklahoma would make successful invasion by tamarisk more likely. They found that the invasive potential of tamarisk in Oklahoma is likely limited by streamflow and climate but not by soil salinity. 

"This case challenges the Animal and Plant Health Inspection Service’s (“APHIS”) 2010 decision to terminate, without taking necessary remedial action, the agency’s program authorizing wide-scale release of an invasive species known as the tamarisk leaf-eating beetle (“beetle”) that is having, and will continue to have, devastating effects on the highly endangered Southwestern willow flycatcher (“flycatcher”) and its habitat, including designated critical habitat."

Ctr. for Biological Diversity v. Vilsack, 276 F. Supp. 3d 1015 (D. Nev. 2017)

In this 2010 Memo from the United States Department of Agriculture (USDA) Animal and Plant Health Inspection Service (APHIS), USDA - APHIS terminates the tamarisk biocontrol program.

In this November 20, 2014 letter, Secretary of the United States Department of Agriculture Vilsack responds to Senator John McCain regarding impacts of the tamarisk biocontrol program on the federally-listed, endangered southwestern willow flycatcher. 

This document is an update to the previous risk analysis that was produced on August 9, 2017, to help inform decision makers of the spread potential of Diorhabda beetles and the potential control options available within the authority of APHIS to limit impacts to the SWFL and designated critical habitat. APHIS updated the analysis in response to a remedial order from the United States District Court for the District of Nevada on June 19, 2018.

 

Remedial order issued to address nontarget effects by the tamarisk beetle on the endangered Southwestern Willow Flycatcher. Lists actions required of Animal and Plant Health Inspection Service (APHIS). 

Center for Biological Diversity v. Vilsack, No. 2: 13-cv-1785-RFB-GWF (D. Nev. June 19, 2018).

Nagler et al. test the assumption that removing saltcedar (Tamarix spp.) will save water and create environments more favourable to these native species. They compared sap flux measurements of water used by native species in contrast to saltcedar, and compared soil salinity, ground water depth and soil moisture across a gradient of 200–1500 m from the river's edge on a floodplain terrace at Cibola National Wildlife Refuge (CNWR).

Glenn et al. measure transpiration and stomatal conductance to investigate the environmental constraints on an arid-zone riparian phreatophtye, saltcedar (Tamarix ramosissima and related species and hybrids), growing over a brackish aquifer along the Colorado River in the western U.S. Depth to groundwater, meteorological factors, salinity and soil hydraulic properties were compared at stress and non-stressed sites that differed in salinity of the aquifer, soil properties and water use characteristics, to identify the factors depressing water use at the stress site.

  A Tale of Two Rivers:  The Role of Different Drought-Like Conditions in Promoting Vegetation Encroachment on the Lower Dolores River