A look into the response of riparian vegetation in the Upper Gila River Watershed to climate change and its implications for restoration work. Researchers used remote sensing to develop maps to identify areas at increased risk of degradation and analyze changes in riparian vegetation using climate as a framework. They found that despite intensifying drought throughout the watershed, vegetation greenness has increased. However, there has been increased stress and rates of wildfire and other disturbances in the lower watershed within the past 5 years.

To what extent has invasive riparian vegetation (IRV) treatment reversed channel narrowing and reduced dynamism trends? Paired treated and untreated reaches at 15 sites along 13 rivers were compared before and after treatment using repeat aerial imagery to assess long-term (~10 year) channel change due to treatment on a regional scale across the Southwest U.S. Wieting et al. found that IRV treatment significantly increased channel width and floodplain destruction.

Nagler et al. test the assumption that removing saltcedar (Tamarix spp.) will save water and create environments more favourable to these native species. They compared sap flux measurements of water used by native species in contrast to saltcedar, and compared soil salinity, ground water depth and soil moisture across a gradient of 200–1500 m from the river's edge on a floodplain terrace at Cibola National Wildlife Refuge (CNWR).

Glenn et al. measure transpiration and stomatal conductance to investigate the environmental constraints on an arid-zone riparian phreatophtye, saltcedar (Tamarix ramosissima and related species and hybrids), growing over a brackish aquifer along the Colorado River in the western U.S. Depth to groundwater, meteorological factors, salinity and soil hydraulic properties were compared at stress and non-stressed sites that differed in salinity of the aquifer, soil properties and water use characteristics, to identify the factors depressing water use at the stress site.

In this 2014 poster, Ryan and Harris report preliminary results on a study of evapotranspiration (ET) at the Cibola National wildlife Refuge. They ask whether groundwater responds to a massive change in ET of surface vegetation and assess baseline well and evapotranspiration data as a proxy for the anticipated tamarisk beetle migration. 

 

A prescription for drug-free rivers: uptake of pharmaceuticals by a widespread streamside willow

Carmen Franks, David Pearce, Stewart Rood

 

Abstract:

The objective of the Healthy Rivers Assessment, authored by The Nature Conservancy, is to serve as a resource and guidance document to provide current freshwater ecosystem baselines and inform project design and prioritization.   This analysis offers a comprehensive assessment of freshwater ecosystems in Colorado, scaled to the HUC 12 subwatershed level, and offers insight into opportunities to maintain, protect, and restore rivers and streams throughout Colorado. 

Provided by Your Remarkable Riparian, this webpage provides a wealth of information about riparian restoration, including mini-modules, workshops, and presentations.