Biocontrol & Threatened and Endangered Species Amanda Stahlke1*

Applying Satellite-based Habitat Models to Inform Riparian Habitat Restoration and Management Actions for Two Listed Riparian Species, the Southwestern Willow Flycatcher and the Yellow-billed Cuckoo 

  James Hatten1, Jennifer Holmes2, and Matthew Johnson3* 

Using Tamarisk Beetle Pheromone Lures to Reduce Re-growth of Tamarisk Following Tree Cutting  Cynthia Brown1*, Hannah Ertl2, Dan Bean3, Zeynep Ozsoy4, Farley Ketchum Sr.5, and Emily Swartz6 

An Integrated Pest Management Plan for the Bill Williams River National Wildlife Refuge. This plan outlines the biological degradation of native riparian forest habitat along the Lower Colorado River and the invasive species management actions needed to protect and restore riparian forests and marshlands of the Bill Williams River. 

DeRango, B., 2023. Integrated Pest Management Plan Bill Williams River National Wildlife Refuge.

From the abstract:

An understanding of trait-environment relationships is particularly important in the case of invasive species which may alter abiotic conditions and available resources. This study is the first to measure the functional response of riparian plant communities to biocontrol of an invasive species.

Each year, with the help of numerous partners across thirteen states and Mexico, RiversEdge West produces an annual distribution map that notes the presence and absence of Diorhabda spp. from sampling sites across the west. The links below contain all archived tamarisk beetle maps spanning over a decade.  

A two-part study looking at how changes in soil salinity affect tamarisk growth and how beetle-induced defoliation affects tamarisk growing in soils with different salinities. Results showed that tamarisk plants grow better in soils with a similar salinity to their own origin site and that lower salinity does not benefit tamarisk plants adapted to higher saline conditions.

A look at beetle-occupied tamarisk sites 11-13 years after initial occupancy to determine long-term vegetative community response. Study found that Tamarix cover across sites initially declined an average of ca. 50% in response to the beetle, but then recovered. Changes in the associated plant community were small but supported common management goals, including a 47% average increase in cover of a native shrub (Salix exigua), and no secondary invasions by other non-native plants.

Development of a novel repellant compound for the potential management of the northern tamarisk beetle (Diorhabda carinulata). Repellant has been shown to be effective on reproductive adults and alter the behaviors of 1st and 2nd instar larvae. Continued development and field deployment of this repellent compound may provide a new tool for the management of D. carinulata.

Stahlke et al. developed a reference genome for tamarisk beetles (Diorhabda spp.) and reference panel of all four introduced parental species to monitor range expansion and hybridization across North America. They found a substantial genetic bottleneck among D. carinulata in N. America, although populations continue to establish and spread, possibly due to aggregation behavior. Among hybrids, they found that D. carinata, D. elongata, and D.